雷竞技在线进入 水利与环境工程学院 |
||||
1、基本信息 |
||||
姓名:屈科 |
性别:男 |
|
||
毕业院校:纽约城市大学 |
技术职称:副教授 |
|||
学历:研究生 |
学位:博士 |
|||
所在学科:港口、海岸及近海工程 |
研究方向:计算流体力学、海岸工程、海洋工程 |
|||
2、教育背景 |
||||
2012.08-2017.09 |
博士 |
|||
2011.08-2012.07 |
硕士 |
|||
2009.09-2013.04 |
硕士 |
|||
2005.09-2009.07 |
本科 |
|||
3、工作经历 |
||||
2019.04-至今 |
副教授、特聘教授 |
|||
2018.04-2019.03 |
特聘教授 |
|||
2017.12-2018.03 |
讲师 |
|||
4、研究领域 |
||||
本人一直从事计算水动力学、海岸/海洋多尺度流动过程的研究工作,2018年入选“湖南省百人计划”青年项目,2019年入选湖南省“湖湘高层次人才聚集工程”创新人才项目,2021年获批“湖南省自然科学优秀青年基金”项目。具体研究方向包括: (1)多尺度海岸动力学研究;(2)潮流能数值普查及应用; (3)风暴及风暴潮数值计算;(4)海岸结构破坏机理研究; (5)海岸植被消波机理研究;(6)浮体复杂水动力学研究; (7)岛礁复杂水动力学计算;(8)岸滩长期演变机制研究; |
||||
5、教学教研 |
||||
承担课程 (2)船舶与海洋工程专业本科课程:《流体力学(一)》、《流体力学(二)》; (1)水利与环境工程学院研究生课程:《计算流体力学(中/英)》; 教改课题 (2)2022年雷竞技在线进入 教学改革研究项目,海洋强国建设背景下船海专业“课程思政”与“科教融合”教学改革与实践---以《流体力学》课程为例, XJG22098, 2022/07-2024/06在研, 主持. (1)2021年雷竞技在线进入 学位与研究生教学改革研究项目,“双一流”背景下研究生课程教学改革的实践与探索, JG2021YB14, 2021/07-2023/06, 在研, 主持. 教学成果 (2)2020年度湖南省“优秀研究生导师团队”称号—“海岸带开发利用与防灾减灾科研创新”研究生导师团队, 核心成员. (1)2019年度湖南省高等学校创新团队—“海岸带开发利用与防灾减灾科研创新团队”,核心成员. 指导学生 (13)2023年度湖南省优秀研究生学位论文, 专业型,湖南省教育厅, 指导教师. (12)2023年度湖南省大学生创新创业训练计划项目, 一般项目,湖南省教育厅, 指导教师. (11)2022年度第四届全国高等学校水利类专业优秀硕士学位论文, 专业型, 中国水利教育协会, 指导教师. (10)2022年度国家级大学生创新创业训练计划项目, 一般项目, 教育部高等教育司, 指导教师. (9)2022年度第三届水科学数值模拟创新大赛, 优胜奖, 中国水利学会, 指导教师. (8)2022年雷竞技在线进入 专业学位研究生实践创新与创业能力提升项目, 孤立波对弹性板的流固电三场耦合, CXCLY2022071, 指导教师. (7)2021年湖南省研究生科研创新项目, 极端风浪耦合作用下刚性植物消波特性高精度数值模拟研究, CX20210783, 指导教师. (6)2021年雷竞技在线进入 专业学位研究生实践创新与创业能力提升项目, 近岸风浪破碎特性高精度数值模拟研究, SJCX202139, 指导教师. (5)2020年雷竞技在线进入 专业学位研究生实践创新与创业能力提升项目,极端风浪耦合条件下海岸桥梁水动力特性数值模拟研究, SJCX202041, 指导教师. (4)2020年雷竞技在线进入 水利工程学院学术型研究生科研创新项目, 锚索式悬浮隧道波流水动力特性数值模拟, 指导教师. (3)2020年度水利工程学院专业学位研究生“实践创新与创业能力提升计划”项目, 悬浮隧道水动力特性数值模拟研究, 指导教师. (2)2020年度水利工程学院专业学位研究生“实践创新与创业能力提升计划”项目, 风浪耦合条件岛礁附近孤立波水动力特性数值模拟研究, 指导教师. (1)2020年度水利工程学院专业学位研究生“实践创新与创业能力提升计划”项目, 风-浪耦合作用下斜坡式海堤越浪的数值模拟, 指导教师. |
||||
6、科研课题 |
||||
(18)国家重点研发计划课题, ***集成与优化设计-子课题, 立项编号: 2022YFC3103601, 2022/12-2026/11, 在研, 主持. (17)湖南省自然科学优秀青年基金项目, 海岸多尺度流动数值计算方法,立项编号: 2021JJ20043,2021/01-2023/12,在研,主持. (16)湖南省自然科学基金青年项目,极端风浪耦合条件下海岸桥梁水动力特性及模拟方法研究,立项编号:2020JJ5582,2020/01-2021/12,已结题,主持. (15)湖南省湖湘高层次人才聚集工程-创新人才项目, 立项编号:2019RS1049, 2019/08-2022/07,已结题, 主持. (14)国家自然科学基金青年项目,极端波浪条件下跨海桥梁周围水动力特性及多尺度模拟方法研究,立项编号:51809021,2019/01-2021/12, 已结题, 主持. (13)湖南省教育厅科学研究重点项目,极端风-浪-流耦合作用机制下跨海桥梁水动力特性及数值模拟方法研究, 立项编号:19A024, 2019/09-2022/8, 已结题, 主持. (12)浙江省河口海岸重点实验室开放基金, 涌潮与海塘相互作用的全尺度数值模拟, 立项编号: ZIHE21009,2021/12-2023/12, 主持. (11)水沙科学与水灾害防治湖南省重点实验室开放基金项目,极端风浪耦合条件下海岸桥梁水动力特性研究, 立项编号:2019SS03, 2019/01-2020/12, 已结题, 主持. (10)国家自然科学基金重点项目,基于数据挖掘的南海岛礁演变机制及多尺度模拟预测技术研究, 立项编号:51839002, 2019/01-2023/12, 在研, 参加. (9)国家自然科学基金面上项目, 黄河源弯曲河流颈口裁弯过程与机理研究,立项编号:51979012, 2020/01-2023/12, 在研, 参加. (8)国家自然科学基金面上项目, 岸礁剖面珊瑚砂输运及其对工程活动响应机制研究, 立项编号:51979013,2020/01-2023/12, 在研, 参加. (7)国家自然科学基金面上项目, 海啸洪水作用下的水沙运动规律及砂质岸滩响应机制研究, 立项编号:51979014, 2020/01-2023/12, 在研, 参加. (6)国家自然科学基金面上项目, 风作用下近岸波浪传播变形及其与建筑物相互作用机制, 立项编号:51979015, 2020/01-2023/12, 在研, 参加. (5)技术开发项目, 南水北调中线引江补汉工程大宁河一站式提水规划方案实施对受水区水环境影响的数值模型搭建, 2019/08-2019/12, 已结题, 技术负责人. (4)技术开发项目, 基于无人机航测技术的祁阳县城市洪水演进模拟研究, 2018/11-2019/12, 已结题, 技术负责人. (3)美国国家自然科学基金项目, Prediction of Hydrodynamic Vulnerability of Coastal Bridges to Extreme Storm Surges, 立项编号: CMMI-1334551, 2013/07-2018/08, 已结题, 参加. (2)美国联合技术研究中心/美国交通运输部项目, Prediction system to estimate evacuation time due to coastal flooding under climate change conditions, 立项编号:49111-26-22 2011/9-2013/7, 已结题, 参加. (1)美国新泽西州运输部项目, Evaluation of potential tidal energy and power generation sites along New Jersey coast using computer modeling and field measurement, 立项编号:49111-21-21, 2010/5-2012/12, 已结题, 参加. |
||||
7、主要著作 |
||||
Chapter: H. S. Tang,K. Qu, X.G. Wu, and Z.K. Zhang, Domain decomposition for a hybrid fully 3D fluid dynamics and geophysical fluid dynamics modeling system: A numerical experiment on a transient sill flow.Domain Decomposition Methods in Science and Engineering XXII,Lecture Notes in Computational Science and Engineering, 407-414.Springer, 2016. |
||||
8、学术论文 |
||||
文章注解:*通讯作者,**课题组研究生,***课题组本科生 英文论文 (58)K. Qu,J.J. Li**,Y. Yao*,X. Wang**.Numerical study on hydrodynamic impacts of 3D excavation pit on tsunami-like wave at fringing reef.Continental Shelf Research,276(2024):105243. (57)K. Qu,X. Wang**,Y. Yao*,J. Men**,R.Z. Gao**.Numericalinvestigation of infragravity wave hydrodynamics at fringing reef with a permeable layer.Continental Shelf Research, 275(2024):105212. (56)L. Guo**(学生),K. Qu*,X. Wang**,J.X. Huang**.Numerical study on performance of submerged permeable breakwaterunder impacts ofmulti-directional focused wavegroups.Ocean Engineering, 302(2024):117665. (55)X. Wang**(学生),K. Qu*.Hydrodynamic characteristics of bridge cofferdam under multidirectional focused waves.Journal of Offshore Mechanics and Arctic Engineering,146(6),2024:061202. (54)X. Wang**(学生),K. Qu*, J. Men, L.B. Zhang, J.J. Li, R.Z. Gao.Influence of excavation pit on wave hydrodynamics of fringing reef under regular waves.Journal of Marine Science and Engineering,11(7), 2023:1464. (53)T. Yuan,X. Wang**,K. Qu*, L.B. Zhang.Hydrodynamic loads and overtopping processes of coastal seawall under coupled impact of extreme waves and wind.Journal of Marine Science and Engineering,2023,11(11),2023:2087. (52)C.B. Jiang,Y.T. Kang,K. Qu*,Y.N. Long, Y. Ma, S.X. Yan.Towards a high-resolution modelling scheme for local-scale urban flood risk assessment based on digital aerial photogrammetry.Engineering Application of Computational Fluid Mechanics,17(1),2023,2240392. (51)Z.H. Jin, F.F. Wei, Y.W. Wu,K. Qu, X. Luo, X.Y. Ren.Simulations of debris flow impacting on bridge pier based on coupled CFD-DEM method.Ocean Engineering, 279(2023):114532. (50)K. Qu*,J. Men**,X. Wang **,X.H. Li ***.Numerical investigation on hydrodynamic processes of extreme wave groups on fringing reef.Journal of Marine Science and Engineering, 11(1), 2023:63. (49)K. Qu,J.X. Huang**, Y. Yao,L. Guo**,X. Wang**,X.H. Li***, C.B. Jiang.Numerical investigation of effects of excavation pit on hydrodynamic processes of tsunami-like wave over fringing reef.Ocean Engineering, 270(2023):113553. (48)K. Qu*,Y.C. Lie**,X. Wang**,X.H. Li***.Numerical analysis on influences of emergent vegetation patch on runup processes of focused wave groups.Journal of Marine Science and Engineering, 11(1), 2023:8. (47)K. Qu,L.B. Zhang**, Y. Yao, C.B. Jiang.Numerical evaluation of influences of onshore wind on overtopping characteristics of coastal seawall under solitary wave.Ocean Engineering, 266(2022):112860. (46)K. Qu,B.H. Wen**, Y. Yao,W.Y. Sun**, C.B. Jiang.Numerical study on hydrodynamic characteristics of movable coastal bridge deck under joint action of solitary wave and current.Ocean Engineering, 262(2022):112143. (45)K. Qu,J.X. Huang**,L. Guo**,X.H. Li***.Numerical study on hydrodynamics of submerged permeable breakwater under impacts of focused wave groups using a nonhydrostatic wave model.Journal of Marine Science and Engineering, 10(11), 2022:1618. (44)K. Qu,T.W. Liu**, L. Chen, Y. Yao, S. Kraatz,J.X. Huang**,G.Y. Lan**, C.B. Jiang.Study on transformation and runup processes of tsunami-like wave over permeable fringing reef using a nonhydrostatic numerical wave model.Ocean Engineering, 243(2022):110228. (43)L. Guo**(学生),K. Qu*,J.X. Huang**,X.H. Li***.Numerical study of influences of onshore wind on hydrodynamic processes of solitary wave over fringing reef.Journal of Marine Science and Engineering, 10(11), 2022:1645. (42)B.H. Wen**(学生),K. Qu*,G.Y. Lan**,W.Y. Sun**, Y. Yao, B. Deng, C.B. Jiang.Numerical study on hydrodynamic characteristics of coastal bridge deck under joint action of regular waves and wind.Ocean Engineering, 245(2022):110450. (41)W.Y. Sun**(学生),K. Qu*, S. Kraatz,G.Y. Lan**, C.B. Jiang.Numerical investigation of the attenuation of tsunami-like waves by a vegetated, sloped beach.Journal of Earthquake and Tsunami, 2140008(2022):1-31. (40)J.X. Huang**(学生),K. Qu*,X.H. Li***,G.Y. Lan**.Performance evaluation of seawalls in mitigating a real-world tsunami wave using a nonhydrostatic numerical wave model.Journal of Marine Science and Engineering, 2022, 10(6):796. (39)K. Qu,G.Y. Lan**,W.Y. Sun**, C.B. Jiang, Y. Yao,B.H. Wen**,Y.Y. Xu**,T.W. Liu**.Numerical study on wave attenuation of extreme waves by emergent rigid vegetation patch.Ocean Engineering, 239(2021):109865. (38)C.B. Jiang,Y.T. Kang**,K. Qu*, S. Kraatz, B. Deng, E.J. Zhao, Z.Y. Wu, J. Chen.High-resolution numerical survey of potential sites for tidal energy extraction along coastline of China under sea-level-rise condition.Ocean Engineering, 236 (2021):109492. (37)K. Qu,G.Y. Lan**, S. Kraatz,W.Y. Sun**, B. Deng, C.B. Jiang.Numerical study on wave attenuation of tsunami-like wave by emergent rigid vegetation.Journal of Earthquake and Tsunami, 2150028(2021):1-28. (36)K. Qu, Y. Wang, H.S. Tang, A. Agrawal, G. Shields, S.I-Jy Chien, S. Gurung, Y. Imam, I. Chiodi.Extreme storms surge and waves and vulnerability of coastal bridges in New York city metropolitan region: an assessment based on hurricane sandy.Natural Hazards, 105(2021):2697-2734. (35)K. Qu,W.Y. Sun**, X.Y. Ren, S. Kraatz, C.B. Jiang.Numerical investigation on the hydrodynamic characteristics of coastal bridge decks under the impact of extreme waves.Journal of Coastal Research, 2021, 37 (2): 442-455. (34)K. Qu,B.H. Wen**, X.Y. Ren, S. Kraatz,W.Y. Sun**, B. Deng, C.B. Jiang.Numerical investigation on hydrodynamic load of coastal bridge deck under joint action of solitary wave and wind.Ocean Engineering, 217(2020):108037. (33)B. Deng, H. Tao, C.B. Jiang,K. Qu*.Numerical investigation on hydrodynamic characteristics of landslide-induced surge waves in narrow river-valley reservoirs.IEEE Access, 8(2020):165285-165297. (32)W.Y. Sun**(学生),K. Qu*, S. Kraatz, B. Deng, C.B. Jiang.Numerical investigation on performance of submerged porous breakwater to mitigate hydrodynamic loads of coastal bridge deck under solitary wave.Ocean Engineering, 213(2020):107660. (31)K. Qu,W.Y. Sun**, S. Kraatz, B. Deng, C.B. Jiang.Effects of floating breakwater on hydrodynamic load of low-lying bridge deck under impact of cnoidal wave.Ocean Engineering, 203(2020):107217. (30)Y. Cai, A. Agrawal,K. Qu*, and H.S. Tang.Closure to “Numerical investigation of connection forces of a coastal bridge deck impacted by solitary waves”by Yalong Cai, A. Agrawal, Ke Qu, and H.S. Tang.ASCE-Journal of Bridge Engineering, 25(1), 2020: 07019003. (29)K. Qu,W.Y. Sun**, B. Deng, S. Kraatz, C.B. Jiang, J. Chen, Z.Y. Wu.Numerical investigation of breaking solitary wave runup on permeable sloped beach using a nonhydrostatic model.Ocean Engineering, 194(2019): 106625. (28)K. Qu,W.Y. Sun**, H.S. Tang, C.B. Jiang, B. Deng, J. Chen.Numerical study on hydrodynamic loads of real-world tsunami wave at highway bridge deck using a coupled modeling system.Ocean Engineering, 192(2019): 106486. (27)K. Qu, H.S. Tang, A. Agrawal.Integration of fully 3D fluid dynamics and geophysical fluid dynamics models for multiphysics coastal ocean flows: simulation of local complex free-surface phenomena.Ocean Modelling, 135(2019):14-30. (26)X.Y. Ren, F.J. Xiong,K. Qu*, N. Mizutani.Free surface flow simulation by a viscous numerical cylindrical tank.Algorithms, 12(2019): doi:10.3390/a12050098. (25)K. Qu, H.S. Tang, A. Agrawal, Y. Cai, C.B. Jiang.Numerical investigation of hydrodynamic load on bridge deck under joint action of solitary wave and current.Applied Ocean Research, 75(2018):100-116. (24)E.J. Zhao, L. Mou,K. Qu*, B. Shi, X.Y. Ren, C.B. Jiang.Numerical investigation of pollution transport and environmental improvement measures in a tidal bay based on a Lagrangian particle-tracking model.Water Science and Engineering, 1(2018):23-38. (23)E.J. Zhao, B. Shi,K. Qu*, W.B. Dong, J. Zhang.Experimental and numerical investigation of local scour around submarine piggyback pipeline under steady current.Journal of Ocean University of China, 2(2018):244-256. (22)K. Qu, X.Y. Ren, S. Kraatz, E.J. Zhao.Numerical analysis of tsunami-like wave impact on horizontal cylinder.Ocean Engineering, 145(2017), 316-333. (21)K. Qu, H. S. Tang, A. Agrawal, Y. Cai.Hydrodynamic effects of solitary waves impinging a bridge deck with air vents.ASCE-Journal of Bridge Engineering, 22(2017), 04017024. (20)K. Qu, X.Y. Ren, S. Kraatz.Numerical investigation of tsunami-like wave hydrodynamic characteristics and its comparison with solitary wave.Applied Ocean Research, 63(2017), 36-48. (19)Y. Cai, A. Agrawal,K. Qu*, H.S. Tang.Numerical investigation of connection forces of a coastal bridge deck impacted by solitary waves.ASCE-Journal of Bridge Engineering. 23(2017), 04017108. (18)K. Qu, H. S. Tang, A. Agrawal, C. B. Jiang, B. Deng.Evaluation of SIFOM-FVCOM system for high-fidelity simulation of small-scale coastal ocean flows.Journal of Hydrodynamics, 28(2016),994-1002. (17)M.X. Xie, C. Zhang, J.Z. Li, S. Li, Z.W. Yang, H.Q. Zhang,K. Qu.Flow structure and bottom friction of the nonlinear turbulent boundary layer under stormy waves.Coastal Engineering164(2021), 103811. (16)E.J. Zhao,K. Qu, L. Mu.Numerical study of morphological response of the sandy bed after tsunami-like wave overtopping an impermeable seawall.Ocean Engineering186(2019), 106076. (15)E.J. Zhao,K. Qu, L. Mu, S. Kraatz, B. Shi.Numerical study on the hydrodynamic characteristics of submarine pipelines under the Impact of real-world tsunami-like waves.Water11(2019), doi:10.3390/w11020221. (14)Z.Y. Wu, C.B. Jiang, B. Deng, J. Chen, Y.N. Long,K. Qu, X.J. Liu.Numerical investigation of Typhoon Kai-tak (1213) using a mesoscale coupled WRF-ROMS model.Ocean Engineering175(2019), 1-15. (13)H.S. Tang(导师),K. Qu, G.Q. Chen, S. Kraatz, N. Aboobaker, and C.B. Jiang.Potential sites for tidal power generation: A thorough search at coast of New Jersey, USA.Renewable and Sustainable Energy Reviews39(2014), 412-425. (12)H.S. Tang(导师),K. Qu, and X.G. Wu.An overset grid method for integration of fully 3D fluid dynamics and geophysics fluid dynamics models to simulate multiphysics coastal ocean flows.Journal of Computational Physics, 273(2014), 548-571. (11)H.S. Tang, S. Kraatz,K. Qu, G.Q. Chen, N. Aboobaker, C.B. Jiang.High-resolution survey of tidal energy towards power generation and influence of sea-level-rise: A case study at coast of New Jersey, USA.Renewable and Sustainable Energy Review32 (2014) 960-982. (10)H.S. Tang, S.I-Jy Chien, M. Temimi, C.A. Blain,K. Qu, L.H. Zhao, S. Kraatz.Vulnerability of population and transportation infrastructure at east bank of Delaware Bay due to coastal flooding in sea-level rise conditions.Natural Hazards, (2013) DOI 10.1007/s11069-013-0691-1. (9)H.S. Tang, S. Kraatz, X.G. Wu, W. L. Cheng,K. Qu, J. Polly.Coupling of shallow water and circulation models for prediction of multiphysics coastal flows: Method, implementation, and experiment.Ocean Engineering, 62(2013), 56-67. (8)K. Qu, H. S. Tang, A. Agrawal, C. B. Jiang, and B. Deng. Evaluation of SIFOM-FVCOM system for high-fidelity simulation of small-scale coastal ocean flows, Proceedings of 2nd Conf. of Global Chinese Scholars on Hydrodynamics, 877-884, Ed. Wu You-sheng, Dai Shi-qiang, Yan Kai. Wuxi, China. Nov. 11-14, 2016, China Ocean Press. (7)K. Qu, Z. K. Zhang, S. Niu, C. Gao H. S. Tang, S. J. Luo.Determination of transonic wind tunnel geometry and studies on wall interference by numerical simulation.50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, 9-12 Jan 2012. AIAA paper 2012-0982. (6)Y.Q. Tian, Z. K. Zhang, Q. Zhai,K. Qu, H. S. Tang.Numerical Prediction of the Minimum Height of Roughness Strip for Artificial Transition on Swept Wings.SciTech 2016 AIAA Conference, San Diego, California, 4- 8 Jan. 2016, AIAA paper 2016-1117. (5)W. Zhou, Z. K. Zhang,K. Qu, H. S. Tang.Numerical Investigation of Transonic Airfoil Buffet Suppression.53rd AIAA Aerospace Science Conference, Kissimmee, Florida, 5-9 Jan. 2015. AIAA paper 2015-0068. (4)T. T. Chen, Z. K. Zhang,K. Qu, H. S. Tang.Numerical Study of Fixed Artificial Transition and the Minimum Height of Roughness Strip for it.21th AIAA Computational Fluid Dynamics Conference, San Diego, CA, 24- 27 Jun. 2013. AIAA paper 2013-3093. (3)W. Zhou, Z. K. Zhang,K. Qu, H. S. Tang.Numerical Investigation of Shock Oscillation over Airfoils at Transonic Speeds Influenced by Trailing Edge Jet.21th AIAA Computational Fluid Dynamics Conference, San Diego, CA, 24- 27 Jun. 2013. AIAA paper 2013-2952. (2)H. S. Tang, Steven I-Jy Chien, M. Temimi,K. Qu, L. H. Zhao, C. A. Blain, and S. Kraatz,Prediction of coastal flooding and evacuation demand estimation considering climate change,Proc. Transportation Research Board 92nd Annual Meeting, 2013. (1)Z. K. Zhang, C. Gao,K. Qu, H. S. Tang, S. J. Luo.Determination of clustering and switching factors in parabolic grid generation.50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, 9 - 12 Jan 2012. AIAA paper 2012-161. 中文论文 (36)王超**(学生),屈科*,王旭**.人工结构物对孤立波岸礁水动力特性和岸滩爬高影响的数值模拟研究.海洋学研究, 2024,待刊. (35)王智宏***(学生),屈科*, 杨元平,王旭**,高榕泽**.卷积神经网络方法在涌潮水动力特性演变的应用研究.海洋学研究, 2024, 待刊. (34)王旭**(学生),屈科*,王梓俊**,杨元平,王超**,张良斌**.风对波状涌潮海塘越浪水动力特性影响的数值研究.热带海洋学报, 2024, 待刊. (33)王旭**(学生),屈科*,杨元平,高榕泽**,门佳**.卷积神经网络在涌潮冲击桩柱体水动力特性上的应用研究.海洋学报, 2024, 待刊. (32)高榕泽**(学生),屈科*, 任兴月, 王旭**.卷积神经网络方法在岛礁类海啸波水动力特性演变的应用.热带海洋学报, 2024, 待刊. (31)虢磊**(学生),屈科*,黄竞萱**.多向聚焦波作用下透水潜堤消波特性数值模拟研究.海洋通报, 2024, 待刊. (30)列彦成**(学生),屈科*,王旭**.刚性植物对聚焦波爬坡影响的数值模拟.海洋科学进展, 2024,待刊. (29)门佳**(学生),屈科*,王旭**,张良斌**.基于非静压模型极端波浪岸礁水动力特性数值模拟研究.海洋湖沼通报, 2024, 待刊. (28)王旭**(学生),屈科*,门佳**.人工采砂坑对规则波岸礁水动力特性的影响研究.海洋通报, 2024,43(1):69-85. (27)张良斌**(学生),屈科*,黄竞萱**,虢磊**.风对孤立波海堤越浪特性影响的数值模拟研究.海洋学研究, 2023,41(04):32-45. (26)王旭**(学生),屈科*,门佳**.透水岸礁亚重力波水动力特性数值研究.海洋学报, 2023, 45 (9):152-167. (25)张良斌**(学生),屈科*,黄竞萱**,虢磊**.风对聚焦波海堤越浪特性影响的数值模拟研究.热带海洋学报, 2023, 42 (6):63-73. (24)李俊杰**(学生),屈科*,王旭**, 蒋昌波.采掘坑对孤立波岸礁水动力特性影响的三维数值模拟研究.热带海洋学报, 2023, 42 (6):42-51. (23)李晓涵***(学生),屈科*, 杨元平,王旭**.波状涌潮在变化地形上的水动力研究.海洋学报,45(7), 2023:1-12. (22)门佳**,(学生)屈科*,王旭**,张良斌**.基于非静压模型的三维极端波浪岸礁水动力特性的数值模拟研究.水动力学研究与进展(A辑), 38(3), 2023:482-494. (21)叶能**(学生),屈科*,王旭**.多向聚焦波作用下跨海桥梁围堰水动力特性数值模拟研究.水动力学研究与进展(A辑),38(3),2023:371-382. (20)屈科,徐瑶瑶**,黄竞萱**,温博浩**.聚焦波作用下悬浮隧道水动力特性数值模拟研究.雷竞技在线进入 学报(自然科学版),20(04), 2023:127-141. (19)徐瑶瑶**(学生),屈科*,黄竞萱**,蓝港芸**,刘铁威**,温博浩**.聚焦波作用下透水潜堤消波特性数值模拟研究.海洋学报, 44(11), 2022: 121-132. (18)蒋昌波,熊玉章**,屈科*, 邓斌, 陈杰.非淹没刚性植物对海啸作用下海堤水动力特性影响数值模拟研究.海洋工程, 2021(39):1-15. (17)屈科,李凯伦**, 蒋昌波, 邓斌,刘铁威**,蓝港芸**.基于非静压模型类海啸波作用下海堤越浪特性,广东海洋大学学报, 2021(41):58-69. (16)卢坤**(学生),屈科*, 姚宇,孙唯一**, 蒋昌波.基于类海啸波型的岛礁水动力特性数值模拟研究,海洋通报, 2021(40):121-132. (15)刘铁威**(学生),屈科*,黄竞萱**, 蒋昌波.孤立波在透水岸礁上水动力特性数值模拟研究,水动力学研究与进展(A辑),2021(36):180-191. (14)蒋昌波,徐进**,屈科*.双自由度子母管线涡激振动数值研究,哈尔滨工程学报, 2021(42):729-737. (13)蒋昌波,徐进**, 邓斌, 陈杰,屈科*.沿程非均匀分布植物区对海啸波消减的数值研究,海洋工程, 38(3), 2020,1-11. (12)蒋昌波,徐进**, 邓斌, 陈杰,屈科*.基于非静压模型的非淹没刚性植物消波特性数值模拟研究,海洋通报, 38(2019):591-600. (11)易振宇**, 蒋昌波,屈科, 邓斌,陈杰.聚焦波浪在浅堤上传播变形高精度数值模拟研究,海洋工程, 2021,39(01):32-42. (10)段自豪, 陈杰, 蒋昌波, 邓斌, 隆院男, 伍志元,屈科.非恒定流作用下的推移质泥沙输移实验研究,中国科学:技术科学, 49(2019):1372-1382. (9)彭浩, 陈杰, 蒋昌波, 何飞, 隆院男,屈科, 邓斌, 伍志元.单株和簇状植物分布方式对消波的影响试验,水利水电科技进展, 39(2019):27-34. (8)彭浩, 陈杰, 蒋昌波, 何飞, 邓斌,屈科,隆院男, 伍志元.刚性植物分布方式对海啸波消减影响实验研究,海洋与湖沼, 49(2019):1159-1168. (7)彭浩, 陈杰, 蒋昌波,何飞, 隆院男,屈科,邓斌, 伍志元.规则波作用下簇状沉水植物群消浪特性实验,中国海洋大学学报, 48(2018): 1-10. (6)田永强, 张正科,屈科, 翟琪.后掠机翼人工转捩最佳粗糙带高度数值预测,航空学报, 2(2016): 461-474. (5)周伟, 张正科,屈科, 翟琪.开缝空腔抑制翼型跨声速抖振的数值模拟.航空学报, 2(2016):451-460. (4)周伟, 张正科,屈科, 高超.后缘射流对跨音速翼型激波振荡影响的数值模拟.弹箭与制导学报, 1(2013): 135-137. (3)成婷婷, 张正科,屈科.用转捩模型预测转捩及确定最佳粗糙带高度.航空计算技术, 5(2012): 75-79. (2)周伟, 张正科,屈科, 高超.翼型阻力计算方法的数值模拟研究.科学技术与工程, 33(2011): 8229-8237. (1)屈科, 张正科*(导师), 高超, 牛嵩.用数值模拟方法确定跨音速风洞几何参数.科学技术与工程, 28(2011): 6915-6921. |
||||
9、学术荣誉 |
||||
(3)“湖南省自然科学优秀青年基金项目”, 2021年7月. (2)“湖湘高层次人才聚集工程-创新人才”, 2019年8月. |
||||
10、联系方式 |
||||
上一条:水利工程学院博士、硕士生导师信息_备份
下一条:苏忖安